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Abstract
We present an exact dynamical solution of a spherical version of the batch
minority game (MG) with random external information. The control parameters
in this model are the ratio of the number of possible values for the public
information over the number of agents, and the radius of the spherical constraint
on the microscopic degrees of freedom. We find a phase diagram with three
phases: two without anomalous response (an oscillating versus a frozen state)
and a further frozen phase with divergent integrated response. In contrast to
standard MG versions, we can also calculate the volatility exactly. Our study
reveals similarities between the spherical and the conventional MG, but also
intriguing differences. Numerical simulations confirm our analytical results.

PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht

1. Introduction

The dynamics of interacting agents is currently studied intensively, applying the ideas and
techniques of equilibrium and non-equilibrium statistical mechanics. One of the models
which has attracted particular attention is the so-called minority game (MG), introduced as a
minimalist econophysics model for a financial market [1]. The players in the MG are traders
who, at each round of the game, have to make one of two possible choices (e.g., buy or sell) in
response to publicly available information. Each aims to make profit by making the opposite
choice to the majority of agents. The interaction between agents is indirect: they cannot
observe individual actions of others, but only the subsequent cumulative effect of all actions
on the market. To determine their own trading actions, each agent holds a pool of strategies,
assigned randomly before the start of the game and then kept fixed. These effectively act as
look-up tables, mapping the observation of publicly available information onto a proposed
trading action. In the versions of the MG studied so far (e.g., [1–4]) agents cannot combine
strategies, but select the one which they regard as their best. We refer to those types of MGs
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as conventional. The identification of the best strategy is based on points the agents allocate
to each of their strategies in order to measure their performance. After each round of the
game each agent evaluates the quality of each of his or her strategies, increasing the points of
strategies which would have yielded a correct minority prediction. For a general overview of
MG-type models we refer to [5].

The update rules of the MG look simple, but describe surprisingly complex cooperative
processes. This is most visible in the non-trivial behaviour of the fluctuations of the total
bid, the so-called market volatility [1–3, 6, 7]. The main control parameter in MGs is the
ratio α = p/N of the number p of possible values for the public information over the number
N of players. One observes a critical value αc which marks a dynamical3 phase transition,
separating a non-ergodic phase (α < αc) from an ergodic one (α > αc). In the non-ergodic
phase, the volatility is very sensitive to initial conditions [3, 8, 9], and the integrated response
is infinite [4]. Moreover, in the stationary state the system exhibits persistent oscillations in
the non-ergodic phase, whereas oscillations decay on finite time scales for α > αc [4, 10].

Analytical progress is possible using equilibrium and dynamical approaches and has
resulted in analytical expressions for αc, which are now regarded as exact [4, 11–13]. The
generating functional analysis à la De Dominicis [14] has proved particularly valuable; it
enabled a full understanding of the dynamics of the MG in the ergodic phase. In this
formalism, the strategy selection dynamics of the agents is mapped onto a non-Markovian
effective single agent process. In the case of conventional MGs, the microscopic laws and
the resulting single-trader process are non-linear and resist analytical solution. Instead, one
derives a coupled set of implicit equations for stationary states, from which one tries to
extract the values of the persistent order parameters. In contrast to equilibrium systems,
there are no fluctuation–dissipation relations which could be used to simplify those equations.
In the ergodic phase the analysis can be simplified taking into account the existence of so-
called ‘frozen agents’ (runaway solutions of the microscopic laws). A proper understanding
of the dynamics in the non-ergodic regime, however, is still lacking. Moreover, for
conventional MGs the market volatility (the MG’s main observable) cannot be expressed
in terms of persistent order parameters. Instead, detailed knowledge of both long-time and
short-time behaviour of the macroscopic order parameters is required. Hence, even in the
ergodic phase, results for the volatility are so far restricted to approximations, whereas in
the non-ergodic phase only approximate asymptotic results in the limit α → 0 are available
[4]. For a recent review of dynamical MG analyses see, e.g., [15]. Approximations
for the volatility in the ergodic state are also accessible within the framework of replica
theory [3].

In this paper we present a version of the MG which is analytically solvable, but nevertheless
displays some of the interesting features found in the conventional MG. To this end we study
the dynamics of a spherical version of the MG using the generating functional approach.
Like in spherical p-spin glasses with polynomial equations of motion for the continuous
microscopic degrees of freedom, explicit closed equations for the two-time correlation and
response functions can be formulated [16].

A second control parameter, the radius r of the sphere to which the dynamics is confined,
becomes relevant in the present model. Apart from the spherical constraint we choose the
update rules to be linear in this paper, so that we can solve the resulting dynamical equations
exactly, reminiscent of the p = 2 case known for spherical spin-glasses [17]. In particular
we are able to compute the volatility in all regions of the phase diagram without making any
approximations at any stage. In terms of the decision making of the individual agents, the

3 MGs do not obey detailed balance, so one can only speak about non-equilibrium phase transitions.
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linear spherical model corresponds to allowing them to play linear combinations of strategies
(rather than to pick the best one).

Despite its simple microscopic rules, the spherical MG as presented in this paper shows
interesting behaviour and exhibits novel features as well as properties analogous to the ones
of conventional MGs. In particular we find three distinct phases in the (α, r)-plane. Our
analytical findings are verified convincingly by numerical simulations.

2. Model definitions

Before defining the spherical version of the MG and giving an interpretation of its update
rules, we will remind the reader of the dynamical rules of a conventional MG as studied, for
example, in [4, 12]. We label the N agents in the MG with roman indices. At each round
t of the game, each agent i takes a trading decision bi(t) ∈ IR (a ‘bid’) in response to the
observation of public information Iµ(t) which is chosen randomly and independently from a
set with p = αN possible values4, so µ(t) ∈ {1, . . . , αN}. The rescaled total market bid at
round t is defined as A(t) = N−1/2 ∑

i bi(t). Each agent i has S � 2 fixed trading strategies
(look-up tables) Ria = (

R1
ia, . . . , R

αN
ia

)
at his or her disposal, with a = 1, . . . , S. If agent i

decides to use strategy a in round t of the game, his or her bid at this stage will be bi(t) = R
µ(t)

ia .
All strategies Ria are chosen randomly and independently before the start of the game; they
represent the quenched disorder of this problem. The behaviour of the MG was found not to
depend much on the value of S [18, 19], nor on whether bids are discrete or continuous [2].
For convenience, we choose S = 2 and Ria ∈ {−1, 1}αN in this paper. In order to decide
which strategy to use, the agents assign points pia(t) to each of their strategies, on the basis
of what would have happened if they had played that particular strategy:

pia(t) = pia(t) − R
µ(t)

ia A(t). (1)

Strategies which would have produced a minority decision are thus rewarded. In the
conventional MG, at each round t each player i uses the strategy in his or her arsenal with
the highest score, i.e. bi(t) = R

µ(t)

iãi (t)
, where ãi (t) = arg maxapia(t). For S = 2, the

rules (1) can then be simplified upon introducing the differences qi(t) = 1
2 [pi1(t) − pi2(t)].

Thus, if qi(t) > 0, agent i plays strategy Ri1, whereas for qi(t) < 0 he or she plays Ri2.
Hence, in the conventional MG bi(t) = ω

µ(t)

i + sgn[qi(t)]ξ
µ(t)

i , where ωi = 1
2 [Ri1 + Ri2] and

ξi = 1
2 [Ri1 − Ri2]. The evolution of the {qi} is given by

qi(t + 1) = qi(t) − ξ
µ(t)

i


�µ(t) +

1√
N

∑
j

ξ
µ(t)

j sgn[qj (t)]


 (2)

with Ω = N−1/2 ∑
j ωj . Equation (2) defines the standard (or so-called ‘on-line’) MG.

Alternatively, corresponding to updating the {qi} only every O(N) time-steps, one might
define the dynamics in terms of an average over all possible values of the external information
in (2), resulting in the so-called (conventional) ‘batch’ MG [4]:

qi(t + 1) = qi(t) − hi −
∑

j

Jij sgn[qj (t)]. (3)

Here Jij = 2N−1ξi · ξj and hi = 2N−1/2ξi · Ω. See [13] for stochastic extensions and [10]
for consideration of the effects of anti-correlation of strategies on the comparison of on-line
and batch models.
4 This is the so-called MG with random external information; in the early MG definition [18] the external information
was not random but coded for the actual history of the global market.
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The batch model (3) is particularly suitable for being replaced by a spherical version. We
first linearize (3), and subsequently normalize5 the vector (q1, . . . , qN) to a fixed length r > 0
at each iteration step t, resulting in the spherical batch MG:

[1 + λ(t + 1)]qi(t + 1) = qi(t) − hi −
∑

j

Jij qj (t) (4)

1

N

∑
i

q2
i (t) = r2 for all t. (5)

The values of the constraining forces λ(t) in (4) follow from (5); we exclude artificial sign
changes by insisting on 1 +λ(t) > 0 for all t. We note that our model (4, 5) has no analogue of
the tabula rasa MG initialization, qi(0) = 0 for all i, often employed in the conventional MG.
We also note that the {qi} of the conventional MG (3) do not satisfy a spherical constraint,
unlike the spins of a conventional Ising spin system. There is thus no reason for restricting
oneself to r = 1. In fact, r is a new control parameter and the system exhibits phase behaviour
in the (α, r)-plane with interesting differences from the conventional game.

The linearity of (4) implies that agents now play linear combinations of their strategies.
Upon presentation of public information Iµ at time t, the bid of player i in a corresponding
on-line game is

bi(t) = 1
2 [1 + qi(t)]R

µ

i1 + 1
2 [1 − qi(t)]R

µ

i2. (6)

The main object of natural interest in MGs is the volatility, which describes the standard
deviation of the total (re-scaled) market bid

Aµ[q(t)] = 1√
N

∑
i

[
ω

µ

i + qi(t)ξ
µ

i

]
. (7)

In the on-line models the relevant averages are over the stochasticity of the ‘information’. In
deterministic batch problems, such as discussed here, these averages are replaced by ones over
µ: 〈At 〉 = p−1 ∑p

µ=1 Aµ[q(t)] and 〈AtAt ′ 〉 = p−1 ∑p

µ=1 Aµ[q(t)]Aµ[q(t ′)]. The volatility
is defined as σ 2

t = 〈
A2

t

〉 − 〈At 〉2. Here we follow [4] and define a more general object, the
volatility matrix �tt ′ = 〈AtAt ′ 〉 − 〈At 〉〈At ′ 〉:

�tt ′ = 1

p

p∑
µ=1

Aµ[q(t)]Aµ[q(t ′)] −

 1

p

p∑
µ=1

Aµ[q(t)]





 1

p

p∑
µ=1

Aµ[q(t ′)]


 . (8)

Note that σ 2
t = �tt . Random trading, with q(t) taken randomly and independently

from the sphere q2(t) = Nr2 at each time t, would result in 〈At 〉 = O
(
N− 1

2
)

and

�tt ′ = 1
2 + 1

2 r2δtt ′ + O
(
N− 1

2
)
. The volatility measures the efficiency of the market, with

σ 2
t = 0 corresponding to a perfect match between supply and demand at time t.

3. Macroscopic dynamics

The similarity between the spherical batch MG (4, 5) and the conventional batch
MG (3) allows us to obtain the effective single trader equations for (4, 5) simply by making
the substitutions q(t + 1) → [1 + λ(t + 1)]q(t + 1) and sgn[q(t)] → q(t) in the results of [4]
(found within the generating functional analysis framework, in the limit N → ∞):

[1 + λ(t + 1)]q(t + 1) = q(t) + θ(t) − α
∑

t ′
(1I + G)−1

t t ′ q(t ′) +
√

αη(t). (9)

5 The spherical normalization is necessary to suppress possible runaway solutions corresponding to eigenmodes of
the linear update rule with eigenvalues of a modulus larger than 1.
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Here θ(t) is an external perturbation field introduced to generate response functions and η(t)

is a zero-average Gaussian noise, characterized by the following covariance matrix (with
Dtt ′ = 1 + Ctt ′ and 1It t ′ = δtt ′):

�tt ′ = 〈η(t)η(t ′)〉∗ = [(1I + G)−1D(1I + GT )−1]t t ′ . (10)

The matrices C and G and the constraining forces λ(t) are the dynamical order parameters of
the problem, to be determined self-consistently by solving

Ctt ′ = 〈q(t)q(t ′)〉∗ Gtt ′ = ∂

∂θ(t ′)
〈q(t)〉∗ Ctt = r2. (11)

One always has 〈q(t)〉∗ = 0. The physical meaning of C and G is given by

Ctt ′ = lim
N→∞

1

N

∑
i

〈qi(t)qi(t ′)〉 (12)

Gtt ′ = lim
N→∞

1

N

∑
i

∂

∂θi(t ′)
〈qi(t)〉 (13)

where · · · denotes an average over the disorder, i.e. over the space of all strategies in the context
of the MG. The brackets 〈. . .〉∗ in (10) and (11) refer to averaging over the realizations of the
process (9), i.e. over the noise {η(t)}. As usual, the single-agent process (9) is non-Markovian.

It is possible to convert the system (9, 10, 11) into a pair of explicit iterative equations for
C and G. An explicit equation for C results upon multiplying (9) by q(t ′) and subsequently
averaging over the noise. We make use of the identity 〈η(t)q(t ′)〉∗ = √

α
∑

s(�tsGt ′s) (derived
via an integration by parts in the generating functional; see [4] for an analogous identity in the
conventional MG). To deal with G (which obeys causality: Gtt ′ = 0 for t � t ′) one takes a
field derivative of (9), followed by averaging. The result reads

[1 + λ(t + 1)]Ct+1,t ′ = Ctt ′ + α[(1I + G)−1D(1I + GT )−1GT ]t t ′ − α[(1I + G)−1C]t t ′ (14)

[1 + λ(t + 1)]Gt+1,t ′ = Gtt ′ − α[(1I + G)−1G]t t ′ + δtt ′ . (15)

As we will describe below, the system exhibits oscillations with period two in certain regions
of the phase diagram. Like in conventional batch MGs, where similar oscillations can be
observed, the dynamical equations can therefore not be converted into a continuum limit upon
replacing Ct+1,t ′ − Ct,t ′ by ∂Ct,t ′

∂t
and similarly for G.

The coupled equations (14, 15) have to be solved subject to the constraint Ctt = r2 for
all t � 0. Furthermore, as in [4] one finds for N → ∞ that the rescaled disorder-averaged
average bid 〈At 〉 is zero at any time, and that the disorder-averaged volatility matrix (8) is
proportional to the covariance matrix of the single-trader noise:

lim
N→∞

�tt ′ = 1
2�tt ′ = 1

2 [(1I + G)−1D(1I + GT )−1]t t ′ . (16)

The dynamic order parameters in the spherical model are prescribed in full by (14, 15),
with the constraints Ctt = r2 and 1 + λ(t) > 0. As in [4], they can be calculated iteratively,
starting from (t, t ′) = (0, 0), and upon using causality (i.e. [Gn]t t ′ = 0 for n > t − t ′). Given
the prescribed values C00 = r2 and G00 = 0 one finds, for instance,

λ(1) = −1 + (1 + α(r−2− 1) + α2)1/2 (17)

G10 = [1 + α(r−2− 1) + α2]−
1
2 (18)

C10 = r2(1 − α)√
1 + α(r−2− 1) + α2

(19)
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(note: G11 = 0 and C11 = r2). From these follow the volatility matrix elements:

�00 = 1 + r2 (20)

�10 = 1 − αr2 + 1√
1 + α(r−2− 1) + α2

(21)

�11 = 1 + r2 − 2√
1 + α(r−2− 1) + α2

+
1 − r2(1 − 2α)

1 + α(r−2− 1) + α2
. (22)

This iteration can be carried out for an arbitrary number of time steps; in practice, however, the
terms become prohibitively more complicated for increasing times. Alternatively, one may
iterate (14, 15) numerically. Unlike the procedure proposed in [20] to generate realizations of
the single trader process, the iteration of (14, 15) does not require averaging over the single
agent noise, and thus provides very precise data (albeit that numerically inverting the t × t

matrices in (14, 15) becomes more and more costly as the number of time steps increases).
One observes that, due to the explicit form of (14, 15) (and in sharp contrast to the similar

calculation in [4]), the temporal evolution of the macroscopic order parameters is completely
independent of initial conditions: as long as the constraint limN→∞ N−1 ∑N

i=1 qi(0)2 =
C00 = r2 is met the distribution P(qi(0)) from which the initial point differences are drawn is
irrelevant for the values of both C and G at finite times as well as for the macroscopic stationary
state. We have verified this in numerical simulations, initializing the dynamics with different
distributions for the qi(0), but all with second moment N−1 ∑N

i=1 q2
i (0) = r2. This property

of the spherical MG is quite distinct from the conventional MG, where the explicit analysis of
the first few time steps as presented in [4] reveals that the values of the correlation and response
functions at finite times depend on the higher moments of P(qi(0)) as well, and not only on
its variance. As far as the stationary state of the conventional MG is concerned the interest
so far has mainly focussed on starts of the form |qi(0)| = q0 for all i, with q0 = 0 for tabula
rasa starts and q0 > 0 for biased starts. Crucial differences between the two cases have been
found in the non-ergodic regime [3, 8, 9]. We have extended this analysis and have performed
simulations of the conventional batch game with different initial distributions for the qi(0) all
with the same second moment q2

0 . For fixed second moment, we find that qualitatively the
stationary volatility does not depend on the higher moments of P(qi(0)), but that differences
in the quantitative values are found for different shapes of the initial distribution of point
differences.

Let us finally inspect the solution of (14, 15) for small α and finite times. By induction
one finds

λ(t) = O(α) Gtt ′ = tt ′ + O(α) Ctt ′ = r2 + O(α)

where tt ′ = 1 if t > t ′ and tt ′ = 0 otherwise. For the volatility we find �tt = O(α2) for
all finite t � 2. We conclude that for small α the system is in a completely frozen state, with
a divergent integrated response and vanishing volatility.

4. Analysis of stationary states

4.1. Implications of time-translation invariance

We now focus on time-translation invariant solutions of the dynamical equations (14, 15), i.e.
we consider the system long after any initial equilibration and study solutions of the form

Ctt ′ = C(t − t ′) Gtt ′ = G(t − t ′) λ(t) = λ. (23)
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Then all matrices in (14, 15) become the Toeplitz matrices, and hence they commute. Given
(23) it is natural to express the dynamics in terms of the Fourier transforms of the correlation
and response functions. We use the following notation:

C(τ) =
∫ π

−π

dω

2π
eiωτ C̃(ω) C̃(ω) =

∑
τ

e−iωτC(τ) (24)

and similarly for G. The equations (14, 15) subsequently translate into

�̃(ω)C̃(ω) = αD̃(ω)G̃(ω)∗

|1 + G̃(ω)|2 − αC̃(ω)

1 + G̃(ω)
(25)

�̃(ω)G̃(ω) = 1 − αG̃(ω)

1 + G̃(ω)
(26)

where �̃(ω) = (1 + λ) eiω − 1, and G̃(ω)∗ denotes the complex conjugate of G̃(ω). Since
D̃(ω) = C̃(ω) + 2πδ(ω), and upon defining the integrated static response χ = ∑

τ G(τ) =
G̃(0), we may rewrite (25) as

[�̃(ω)|1 + G̃(ω)|2 + α]C̃(ω) = 2παχδ(ω). (27)

Note that considering the case ω = 0 in (26) allows us to express λ in terms of χ

λ = 1 + χ(1 − α)

χ(1 + χ)
. (28)

Finally, in the stationary state the volatility matrix � is also of the Toeplitz form �tt ′ = �(t−t ′)
and thus the volatility σ 2 = �(0) can be expressed as

σ 2 = 1

2

∫ π

−π

dω

2π

C̃(ω)

|1 + G̃(ω)|2 +
1

2(1 + χ)2
. (29)

Since initial conditions play no role in the macroscopic dynamics, we must conclude that as
soon as multiple stationary solutions exist only one of these will ever be realized.

Before we give a detailed account of the further analysis of the dynamical equations, we
briefly summarize our results. We find that, depending on the control parameters α and r, the
system displays three distinct phases, as illustrated in figure 1:

(i) a phase with finite integrated response and oscillatory behaviour of the correlation
function (O),

(ii) a frozen phase with finite integrated response (F),
(iii) a frozen phase exhibiting anomalous integrated response which grows linearly with time

(AF).

We will now proceed to obtain exact solutions of the dynamical equations in each of the three
phases.

4.2. Stationary states without anomalous response

We first inspect stationary states with finite χ , i.e. those for which perturbations will decay
sufficiently fast. It now follows from (27) that, for any ω 	= 0, C̃(ω) can be non-zero only if
�̃(ω)|1 + G̃(ω)|2 + α = 0. This requires �̃(ω) to be real, which is possible only for ω = 0, π .
We conclude that C̃(ω) = 2πc0δ(ω) + 2πc1δ(ω − π), or equivalently

C(τ) = c0 + c1(−1)τ . (30)
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0 0.5 1
0

0.5

1

r

α

F

OAF

Figure 1. Phase diagram of the spherical MG, displaying three phases: O, oscillating correlation
function and finite integrated response; F, frozen phase with finite integrated response; and AF,
anomalous frozen phase with diverging integrated response. Throughout the phase AF the volatility
is zero. The O → F transition is defined by (39) and the F → AF transition is defined by (46);
both are continuous. The discontinuous transition from O → AF occurs at α = 3 − 2

√
2 ≈ 0.172.

The triple point corresponds to α = 3 − 2
√

2 and r = r∗ ≈ 0.455.

Here c0 and c1 (which will depend on the parameters α and r, as will χ ) are coupled via
the spherical constraint: c0 + c1 = r2. Insertion of (30) into (27) leads to the following two
coupled equations

c0[α + λ(1 + χ)2] = αχ (r2− c0)[α − (λ + 2)(1 + χ ′)2] = 0 (31)

with χ ′ = ∑
t (−1)tG(t) = G̃(π) measuring the response to persistent oscillating

perturbations. These equations are to be solved in combination with (26). We conclude
that there are two types of stationary states with finite χ : a frozen state, where c0 = r2 (so
c1 = 0), and an oscillating state, where c0 < r . We will work out their properties separately
below. For solutions of the form (30) we can also work out (29) further,

σ 2 = 1 + c0

2(1 + χ)2
+

(r2 − c0)

2(1 + χ ′)2
. (32)

4.2.1. Oscillating stationary states without anomalous response. Here c0 < r2, and the
remaining four (coupled but closed) equations to be solved to find the stationary state include
one expression for χ ′ which one obtains by choosing ω = π in (26):

c0 = αχ

α + λ(1 + χ)2
α = (λ + 2)(1 + χ ′)2 (33)

λ = 1 + χ(1 − α)

χ(1 + χ)
λ + 2 = −1 + χ ′(1 − α)

χ ′(1 + χ ′)
. (34)

The set (33, 34) allows for two types of solutions. The first, where λ = α − 1 + 2
√

α, obeys
the requirement 1 + λ > 0 for all α. One must in fact demand λ > 0 in order to have a finite
χ (as required), and we reject χ < 0 solutions on physical grounds. This leaves

λ = α − 1 + 2
√

α (35)

χ = 1 − α − √
α +

√
2α3/2 + α2

−1 + 2
√

α + α
(36)



Dynamics of a spherical minority game 11167

χ ′ = − 1

1 +
√

α
. (37)

We note that λ, χ , χ ′ and c0 are independent of r; only c1 depends on r via c1 = r2 − c0. The
second type of solution, where λ = α − 1 − 2

√
α, meets our requirement λ + 1 > 0 only for

α > 4. It turns out that such solutions are never realized, so we will not give their equations
in full. We have now determined all order parameters and the volatility in explicit form:
c0 follows from insertion of (35, 36) into the first equation of (33), whereas the volatility
follows upon inserting c0 and (36, 37) into (32). For α → ∞ one finds limα→∞ χ = 0,
limα→∞ λ/α = 1, so that limα→∞ c0 = 0; the amplitude of the oscillations in the correlations
increases with increasing α.

The present solution breaks down when either χ → ∞ or c1 → 0. The corresponding
mathematical conditions are found to be α = αc,1 (with χ < ∞ for α > αc,1) and α = αc,2(r)

(with c1 > 0 for α > αc,2(r)), respectively, where

αc,1 = 3 − 2
√

2 ≈ 0.172 (38)

αc,2(r) =
[

1 − 2 + 1/r2

2
√

1 + 1/r2

]2

. (39)

We note that αc,1 = αc,2(r) at r = r∗ = √
αc,1/(1 − αc,1) ≈ 0.455, and that αc,2(r) > αc,1

for r < r∗ and αc,2(r) < αc,1 for r > r∗. Thus one expects that, as α is lowered for any
r > r∗, the amplitude of the oscillations of the correlations remains positive until the critical
value αc,1 is reached and a transition to a state with anomalous response occurs. At this point
one has

lim
α↓αc,1

σ 2 = 1

3 − 2
√

2

(
r2 − 3 − 2

√
2

2(
√

2 − 1)

)
. (40)

For r < r∗ the oscillatory behaviour of the correlations breaks down as α is lowered before
anomalous response sets in, and the system enters a frozen state with finite integrated response.

4.2.2. Frozen stationary states without anomalous response. Here c0 = r2, and there is no
need to calculate χ ′; the coupled equations to be solved are simply

λχ2 + (2λ − α/r2)χ + λ + α = 0 (41)

λχ2 + (α − 1 + λ)χ − 1 = 0 (42)

from which we can determine λ and χ to be

λ = −1 − α +
(2 + 1/r2)

√
α√

1 + 1/r2
(43)

χ = [
√

α
√

1 + 1/r2 − 1]−1. (44)

Upon inserting (44) and the relation c0 = r2, one finds that our exact expression (32) for the
volatility simplifies to

σ 2 = 1
2

[√
r2 + 1 − r/

√
α
]2

. (45)
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The present frozen state will cease to be a consistent solution at the point where χ diverges.
Equation (44) states that this happens at α = αc,3(r), where

αc,3(r) = r2/(r2 + 1). (46)

The line α = αc,3(r) marks the transition between a frozen state with finite-integrated response
(for α > αc,3(r)), and an anomalous frozen state (for α < αc,3(r)). According to (45) it also
coincides with the line where the volatility vanishes.

4.3. Frozen states with anomalous response

Numerical simulations for small α and large r reveal a parameter regime with a stationary state
in which the volatility vanishes, σ 2 = 0, and where all agents are frozen in such a way that

C(τ) = r2 λ(τ) = 0 χ = ∞. (47)

These three identities clearly hold at the transition line (46), where anomalous response
first emerges in the frozen state. In this subsection, we demonstrate that our dynamical
equations (14, 15) indeed allow for self-consistent stationary state solutions with the
properties (47). Note that (47) directly imply that

∑
τ [1I + G]−1(τ ) = (1 + χ)−1 = 0,

and hence also σ 2 = 0. Insertion of (47) as ansätze into (14, 15) now gives

0 = [(1I + G)−1D(1I + GT )−1GT ](τ ) − [(1I + G)−1C](τ ) (48)

G(τ + 1) = G(τ) + α(1I + G)−1(τ ) + (1 − α)δ(τ ) (49)

where δ(τ ) = 1 if τ = 0 and δ(τ ) = 0 otherwise. We define the persistent response
g = limT →∞ T −1 ∑

τ�T G(τ), and sum both sides of (49) from τ = 0 to τ = �, to get

G(� + 1) = 1 − α + α
∑
τ��

(1I + G)−1(τ ). (50)

We conclude that g = 1 − α. From this, in turn, one infers for α < 1 that indeed
χ = ∑

τ G(τ) = ∞, which confirms in retrospect that our ansätze (47) indeed solve our
dynamical laws (48, 49).

5. The phase diagram and its verification

In the previous section, we have identified three distinct phases, which according to the
extensive numerical simulations described below exhaust the phase diagram in the (α, r)-plane
of the present spherical MG. We have also derived explicit expressions for the macroscopic
order parameters and the volatility in all three phases, and we have been able to calculate the
various phase boundaries in explicit form. Our results may be summarized as follows:

α > max{αc,1, αc,2(r)} : oscillating phase (O)

oscillating C(t), finite χ

r < r∗, αc,3(r) < α < αc,2(r) : frozen phase (F)

constant C(t), finite χ

α < min{αc,1, αc,3(r)} : anomalous frozen phase (AF)

constant C(t), infinite χ

with

αc,1 = 3 − 2
√

2 αc,2(r) =
[

1 − r + 1/2r√
r2+ 1

]2

αc,3(r) = r2

r2+ 1
. (51)
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Figure 2. Verification of the O → AF and O → F transitions. Left pictures: Lagrange parameter
λ, oscillation amplitude c1 and volatility σ 2 versus α, for r = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5 (from
top to bottom in the panels showing c1 and σ 2). Here we expect to see the O → AF transition.
Markers: simulations; solid lines: theory. The dashed vertical line marks the predicted location
αc,1 of the O → AF transition. Right pictures: the same observables shown versus α, but now for
r = 0.4, 0.3, 0.2; here we expect to see the O → F transition. Markers: simulations for r = 0.2
(circles), r = 0.3 (squares) and r = 0.4 (diamonds); solid lines: theory. The lines are continued
as dashed lines into the opposite phases, where they should no longer be valid.

The resulting phase diagram is shown in figure 1. Let us briefly discuss its main features. For
r > r∗ the behaviour of the spherical MG is similar to that of its conventional counterparts,
with a divergence of χ at some fixed critical α and χ remaining infinite as α is reduced
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Figure 3. Verification of the F → AF transition. Lagrange parameter λ (left) and volatility
σ 2 (right) versus α, for r = 0.2 (circles), r = 0.3 (squares) and r = 0.4 (diamonds). Solid
lines: theory. Both observables are predicted to converge to zero as the transition α = αc,3(r) is
approached from above, and to remain zero below the transition.

further to zero. There are crucial differences though: firstly, in the conventional MG persistent
oscillations are found only for α < αc, while they decay above the transition. The opposite
is the case in the spherical model. Secondly, in the conventional MG the volatility σ 2 is a
smooth function of α across the transition. In the spherical model, we find that the volatility
(and the amplitude c1 of the oscillations as well) exhibits a jump at α = αc,1 for r > r∗. The
discontinuity of σ 2 follows immediately from the non-zero value of (40) for r > r∗, which
gives σ 2 in the phase O close to the O → AF transition, whereas one has σ 2 = 0 throughout
the AF phase. The magnitude of the jump decreases as r is lowered and finally vanishes at
r = r∗. Below r = r∗ no discontinuities are present and one finds an intermediate regime,
where the system freezes, but as yet with a finite χ . Only as α is lowered further a transition
to a frozen phase with anomalous integrated response takes place at α = αc,3(r), and below
αc,3(r) both the volatility and the normalization factor λ vanish identically.

We have tested our theoretical predictions against numerical simulations of the spherical
MG. The data shown in the figures are all obtained from simulations of the batch process (4, 5)
with N = 500 players, and averaged over 20 realizations of the disorder (i.e. the realizations of
the strategies). All measurements are temporal averages over 250 time steps, preceded by 250
‘equilibration’ steps. We focus on the parameter regions where the various phase transitions
are predicted to occur and depict the values of the stationary order parameters λ and c1 as
well as the volatility σ 2 as indicators for the predicted transitions. The precise locations of the
various transitions are given in (51).

Figure 2 concerns the O → AF and O → F transitions. For r > r∗ ≈ 0.455 we expect
to see the O → AF transition. Here our theory predicts that λ = α − 1 + 2

√
α for α > αc,1,

and λ = 0 for α < αc,1. At αc,1 the volatility and the oscillation amplitude c1 should both
jump discontinuously to zero. For r < r∗, on the other hand, we should observe the O → F
transition where c1 goes to zero continuously at α = αc,2(r). We also expect λ and σ 2 to be
continuous at this transition, albeit their derivatives with respect to α change discontinuously.
The data in figure 2 reveal full agreement between theory and simulation (up to finite size
effects close to the transitions). Although we restrict ourselves to r � 1 in figure 2, we
have verified that the qualitative behaviour of the system remains unchanged for larger values
of r and that the very good agreement between theory and simulation continues to hold for
r > 1. Figure 3 concerns the F → AF transition, where λ and σ 2 are predicted to vanish as α

approaches αc,3(r) from above. Again we find good agreement between theory and numerical
experiment.
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6. Conclusions

In this paper we have introduced a spherical version of the batch minority game, with random
public information. In this model, the non-linear update rule of the conventional game is
replaced by an iteration prescription which is linear in the microscopic degrees of freedom
(the point differences qi(t)), complemented by a spherical constraint N−1 ∑

i q
2
i (t) = r2.

The spherical MG is designed to be exactly solvable in the thermodynamic limit. In terms
of the decision making of the individual agents, the linearized microscopic dynamical laws
corresponds to allowing the agents to play linear combinations of their two strategies. The
relevant control parameters of the spherical MG are the radius r of the sphere to which the
dynamics is confined and the ratio α = p/N of the number of possible values of the external
information over the number of agents.

Using the dynamic mean field theory introduced by De Dominicis we are able to
perform the average over the disorder and to take the thermodynamic limit. This formalism
reduces the original N-agent dynamics to a non-Markovian effective single-agent stochastic
process. Like in spherical spin-glass models, the temporal evolution of the macroscopic
order parameters (the correlation and response functions) can be formulated in terms of a
pair of coupled iterative equations, without referring to the microscopic single effective-agent
process. Assuming the existence of a time-translation invariant stationary state we are able
to solve these equations exactly, and to compute the order parameters in the stationary state
as well as the stationary volatility at every point of the phase diagram without making any
approximations.

We find that, although the update rule is relatively simple compared to the conventional
MG, the spherical MG displays a remarkably rich structure. Depending on r and α the system
exhibits three distinct phases, two without anomalous response (an oscillating and a frozen
state) and a further frozen phase with diverging integrated response. As described above
the spherical model exhibits some similarities as well as intriguing differences compared
to conventional MGs. The four main differences are: (i) the absence of any macroscopic
dynamical effect of the choice of the initial microscopic state in the spherical game,
(ii) the fact that, for any r, the volatility is always zero close to α = 0 whereas in the
conventional MGs both high-volatility and low-volatility solutions can be found, (iii) persistent
oscillations in the spherical MG, which increase for increasing α and vanish for low α,
where in the conventional batch MG persistent oscillations can only be found in the low-α
regime and (iv) the discontinuous dependence of the volatility on α in the spherical MG
for r > r∗.

In summary, our study demonstrates that the dynamical rules of the conventional
MG can be simplified to obtain a completely solvable spherical version, which still
displays a non-trivial phase diagram and some novel features, which are not observed in
conventional MGs. It would be interesting to study further the mathematical properties of
the spherical model, such as the relaxation towards the stationary state and possible ageing
phenomena.
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